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1. 

Techniques for the analysis and characterization of linear dynamical systems with
constant parameters are well established. However, investigating systems with
non-linearities and time-varying parametric effects can be a much more difficult
undertaking, requiring new methodologies and analysis techniques. An important
area in this regard is that of rotating machinery. An important non-linearity results
from the rotor interacting with a clearance bearing and there have been a number
of important studies concerned with this area. Some of the earliest work was
performed by Yamamoto [1], who conducted a systematic study of rotor responses
involving bearing clearance effects. Notable studies in this area also include Ehrich
[2], who reported the first identification of a second order subharmonic vibration
phenomenon in a rotor system associated with bearing clearance and the work of
Black [3], which concluded that rotor/stator interactions may occur in a variety
of forms and circumstances, including jump phenomena.

Rotordynamic researchers have also investigated other non-linear effects. In
particular, Muszynska [4] investigated the non-linear phenomena of oil whirl and
oil whip in rotor bearing support systems and concluded that significant stability
problems can occur due to the self-excited responses that result. Also, Padovan
and Choy [5] investigated the non-linear dynamical behavior excited by
blade–casing rub interactions.

A discussion of the dynamics of systems with variable parameters is given by
Dimentberg [6]. Analysis strategies for such systems, centered around the use of
Floquet and Lyapunov techniques, have been used by a number of researchers.
Sinha, in a series of papers [7, 8], has developed a technique for the analysis of
dynamical systems governed by equations with time-varying coefficients and
non-linear effects. In this regard, a system specific to rotating machinery was
considered by Wettergren and Olsson [9], who presented a study of the stability
characteristics of an asymmetric rotor with internal damping and supported by
anisotropic bearings, using Floquet methods. Childs [10] described a number of
non-linear effects that can significantly influence rotordynamical responses. His
text serves as an excellent source of information on studies of non-linear
rotordynamics. Choi and Noah [11] and Lawen and Flowers [12] investigated the
influence of bearing clearances on rotordynamic responses. These papers give
additional review material and lists of further references on this topic.
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2. 

Most rotordynamic motions have an inherent periodicity related to the rotor
speed. This characteristic lends itself well to study using Fourier analysis, which
is the most widely used approach for the vibratory analysis of rotating machinery.
While the information obtained is very useful in diagnosing rotordynamic
problems, very little insight into the stability characteristics of the system is
obtained. Although stable motion is one of the main factors in any successful
design, a dynamic stability index for rotordynamic motion has not previously been
addressed. There is no commonly accepted quantitative way to judge
rotordynamic stability.

Floquet theory, which is commonly used to investigate the stability of periodic
systems, offers a possible methodology for quantifying stability in rotordynamic
systems. The method proposed below allows for kinematic data collected from
experimental and/or simulation codes and captured at specified instants in time
to be efficiently analyzed. Complex dynamics under various configurations can be
accommodated by this approach. In the following sections, the methodology is
described and applied to an example rotor system. This approach is inherently
concerned with quantifying the relative stability of systems oscillating about a
stable equilibrium orbit. Unstable vibration modes cannot be analyzed with the
proposed method.

3.  

The fundamental aspects of the theory used in the present investigation are first
outlined. Then, stability measures to quantify the robustness of periodic patterns
subject to perturbations are developed. This development is based on Floquet
theory, which is used to investigate the local stability of critical points of periodic
motions. In simple terms, it is desired to quantify the robustness of the periodic
patterns when subjected to disturbances. The proposed approach is based on an
interactive review of phase plane portraits and Poincaré sections at critical
transitional points [13].

Figure 1. Schematic diagram of simplified rotor model.
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Figure 2. Phase plane portraits of experimental rotor responses: frequency of (a) 25·25 Hz; (b)
70·00 Hz.

As an illustrative example, a simple two-degree-of-freedom (Jeffcott) rotor
model, as shown in Figure 1, is considered. The motion of this system evolves in
the four-dimensional state space

x= {q1, q2, q̇1, q̇2}, (1)

where q1 is the horizontal displacement and q2 is the vertical displacement. Dots
denote differentiation with respect to time.

The motion of the model is considered to be a periodic function related to the
spin speed of the rotor shaft. For such systems, one can identify periodic motion
from appropriate phase plane portraits. For example, Figure 2 depicts the motion
evolution of the horizontal displacement on the phase plane q1 versus q̇1 for two
cases with different rotor speeds. When the motion becomes periodic, the
trajectory is a closed loop. In general, one expects to see several transient steps
before the system attains periodicity when the system starts from rest. The
evolution of the system’s motion can be represented by using projections of the
orbits onto the phase plane of a particular displacement and velocity. This requires
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knowledge of the displacements and velocities at the specific points that are being
considered.

A classical technique to analyze dynamical systems was developed by the
nineteeth century French mathematician, Henri Poincaré. A formal mathematical
description of Poincaré theory can be found in many previously published books
and articles, such as Moon [14], Guckenheimer and Holmes [15], and Wiggins [16].
An informal presentation that describes the main features of the approach, its
advantages, and its relevance to rotordynamic studies is given in the following
discussion.

Periodic motions of a system can be represented by closed orbits in phase space.
The points of the trajectory that coincide with a specific chosen instant, T, are
labeled as ji and the point of the closed orbit is labeled as je . The first return map
for the generalized co-ordinate q1 at the instant can now be obtained by plotting
the values of q1 at ji versus the values at ji+1, as shown in Figure 3 for two values
of rotor speed. The iteration point that corresponds to the closed orbit, je , is on
the 45° line because, when the motion is periodic, je at T is identical for all
successive steps. On the other hand, it is observed that points on the map
accumulate at je as the system takes successive steps. The same construction can
also be performed for q2 or for any other kinematic quantities. Discrete first return

Figure 3. First return maps of experimentally observed responses: frequency of (a) 22·25 Hz; (b)
55·00 Hz.
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maps for particular co-ordinates can be constructed and used to investigate their
evolution with successive steps.

4.    

For the simplified system that was considered above, the state variables are the
two generalized co-ordinates (q1 and q2) and two generalized velocities (q̇1 and q̇2).
Accordingly, the analytical representation of the graphical construction described
in the previous section can be written as

xi+1 = f(xi ), (2)

where xi and xi+1 represent the state space vector at the Poincaré section during
the ith and (i+1)th steps, respectively. The function f is the discrete map that
represents the dynamics of the non-linear model. Now, periodic motions of the
system become the critical points of this map. For the equilibrium point xe for the
non-linear systems, one can write,

xe = f(xe ) (3)

The local stability criteria can be established through discussion of the linearized
equations governing small motion about the equilibrium points of the map. If yi

is defined as the perturbation vector, then

xi = xe + yi and xi+1 = xe + yi+1. (4)

Substituting equation (4) in equation (2), one obtains

xe + yi+1 = f(xe + yi ). (5)

Linearizing the map f about the equilibrium point xe and retaining only the linear
terms yields

yi+1 = Jyi , (6)

where J is the Jacobian matrix. In this case, the matrix J is a 4×4 constant
coefficient matrix. The eigenvalues of this matrix are called the Floquet multipliers
and can be used to determine the dynamic stability of the periodic motions of the
system. The theory states that the motion is stable when the magnitudes of all
Floquet multipliers are less that unity. The eigenvalues can be real or complex
numbers. If at least one eigenvalue has magnitude equal to one, then the
equilibrium point is marginally or simply stable.

Because of the complexity of the rotating machinery systems, the discrete map
f cannot be derived analytically. Yet, one can obtain the Jacobian matrix of the
linearized map by measuring the data numerically. Non-linear dynamical theory
dictates that the Floquet multipliers do not depend on the choice of Poincaré
section [12]. One should be able to compute the same multipliers when the section
is taken at any well defined instant during the dynamic cycle. However, there are
difficulties associated with tracking the motion of individual multipliers on the
complex plane when they vary as a result of changing the Poincaré section.
According the Floquet theory, the largest multiplier dictates the stability
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Figure 4. Experimental rotor system with clearance bearing apparatus.

characteristics of the system. Using this idea, an overall measure of stability can
be defined that eliminates the need for tracking the individual eigenvalues. A
measure can be defined as

r=max =li =, (7)

where the li are the Floquet multipliers. Smaller values of this measure represent
periodic motion that is more robust to perturbations and, hence, more stable.

For constant coefficient systems, the real parts of the eigenvalues, mi , are related
to the Floquet multipliers, li , as

=li ==e(2pmi /v), (8)

where the li are the Floquet multipliers. An appropriate stability index can be
defined as

k=−
v ln r

2p
. (9)

The minus sign (−) serves to make k a positive quantity for stable systems and
a negative quantity for unstable systems.

5.  

Several studies were performed to demonstrate the analysis method described
in the previous sections. These studies used data generated with an experimental
test rig with a clearance bearing non-linearity and a corresponding simplified
simulation model.

A photograph of the experimental test rig is shown in Figure 4 and the
associated schematic diagram is shown in Figure 5. It has two basic components:
a flexible shaft and a clearance bearing assembly. The shaft is made of steel and
is 9·5 mm in diameter and 0·46 m in length. It is supported at 25·4 mm from the
right end by ball bearings suspended in a frame by four springs and at 25·4 mm
from the left end by a bushing with a tight clearance. A rigid disk with holes for
placing imbalance screws is positioned at the midpoint of the bearing span.



Motor Bushing

Flexible shaft

Vertical and
horizontal sensors

Signal
conditioner

HP 35665A
dynamic signal analyzer

Clearance bearing
Bearing
supported
by springs

Rigid disk

Rotor speed
control

��
��
��
��

��
��
��

��
��
��

�
�
�
�
����

��

Rig base

Bushing

Housing
mass

Frame

Rotor

Spring

   356

Figure 5. Schematic diagram of experimental rotor system.

The rotor is driven by an adjustable speed motor with a feedback speed
controller. Shaft vibration is measured using eddy current proximity sensors fixed
to measure displacement in the vertical and horizontal directions. The
displacement signals of the shaft are sent to a signal analyzer.

Figure 6. Schematic diagram of clearance bearing apparatus.
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T 1

Nominal parametric configuration for
simulation model

Parameter Magnitude Units

c1 54·6 1/s
k1 49023·52 1/s2

c2 54·6 1/s
k2 9804·704 1/s2

A diagram of the clearance bearing/housing assemble is shown in Figure 6. It
consists of a bushing suspended in a frame by springs and is situated at the right
end of the rotor. For this study, the housing mass is rigidly connected to the frame
and does not play a role in the system dynamic behavior.

The simplified two-degree-of-freedom Jeffcott model used in the simulation
studies is as shown in Figure 1. The governing equations are

q̈1 + c1q̇1 + k1q1 + (c2q̇1 + k2q1)01−
D

r1F= ev2 cos vt, (10)

q̈2 + c1q̇2 + k1q2 + (c2q̇2 + k2q2)01−
D

r1F= ev2 sin vt, (11)

F=61,
0,

Dq r,
DQ r;

r=zq2
1 + q2

2. (12, 13)

The nominal parametric configuration shown in Table 1 was used for all of the
results presented in the following discussion, unless otherwise indicated. Phase
plane portraits for each trial were constructed for the system. The phase plane
portraits are a closed loop indicating periodic motions of the system, as shown
in Figure 2. The first return maps were constructed by plotting values of the
displacements or velocities obtained at a particular instance in one pass against
the same values in the immediate next pass, as shown in Figure 3. The tendency
of the points to be near the diagonal justified our assumption of observing steady
state motion after a few rotations.

Figures 7(a) and (b) illustrate the results obtained by varying the bearing
clearance for three values of imbalance (using simulated data) and for selected
experimental data (e=0·5 mm). Note that there is excellent agreement between
experimental and simulated results. For zero clearance, all three configurations
have the largest subunit Floquet multiplier of 0·38 and a stability index of 0·94.
This is the configuration with the maximum stability. This is expected, since for
zero clearance, the damping from both the linear bearings and the clearance
bearing are effective. As the clearance increases, the damping from the clearance
bearing plays a decreasing role in the effective system damping, resulting
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Figure 7. (a) Floquet multiplier values and (b) stability index for varying clearances (v=58 Hz);
lines represent simulation results: R, experiment; ——, e=0·5mm; – – –, 0·25 mm; ------, 1·0 mm.

in an increasing largest subunit Floquet multiplier (and correspondingly, a
decrease in system stability). For sufficiently large values of clearance, contact
between the rotor and the clearance bearing ceases and the stability index goes to
a constant value of 0·47. The rotor whirl radius is correspondingly larger for larger
values of imbalance. Subsequently, the rotor is in contact with the clearance
bearing for larger values of the clearance, resulting in additional effective damping
to the system and increased stability.

Figures 8(a) and (b) illustrate the results obtained by varying the rotor speed
for a set value of bearing clearance. Again, the results are presented for three
values of imbalance (using simulated data) and for selected experimental data

Figure 8. (a) Floquet multiplier values and (b) stability index for varying rotor speed
(D=0·381 mm); lines represent simulation results: R, experiment; ——, e=0·5 mm; – – –, 0·25 mm;
-----, 1·0 mm.
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(e=0·5 mm). As the rotor speed increases, the largest subunit Floquet multiplier
tends to increase, until a speed of about 25 Hz is achieved. Then, there is a brief
decrease for a narrow range of rotor speeds, followed by a continuation of the
previous increasing trend for the Floquet multiplier. Interestingly, this range of
rotor speeds is in the neighborhood of the first critical speed, where the highest
amplitude responses occur. Again, the damping from the clearance bearing is most
effective in this range, resulting in an overall increase in system damping and
stability. The experimental and simulated results shown in Figures 8(a) and (b)
generally have excellent agreement. The most substantial difference occurs for the
highest values of the rotor speed. The divergence is due to the limitations of the
simulation model. The second critical speed for the rotor system is at about 100 Hz
and its effects are evident for speeds above 60 Hz. The influence of this additional
critical speed (which is not accounted for by the simple Jeffcott rotor model) is
to raise the rotor whirl radius, resulting in more contact with the clearance bearing,
increased effective damping, and a larger stability index.

6. 

A method of performing stability analyses for rotordynamic systems has been
presented. Theoretical aspects of the method were developed. Principally, these
consist of using Poincaré plots to obtain the nominal equilibrium periodic solution
and applying Floquet analysis in a numerical fashion to the measured data, based
upon this equilibrium solution, to obtain the stability measure.

Example studies were performed with a clearance bearing rotor rig to illustrate
the method. The vibratory motion of the rotor model was considered to be a
periodic function related to the spin speed of the shaft, enabling the use of the
Floquet method. An important aspect of this analysis procedure is that the
necessity for any information on the complex internal mechanisms of rotating
systems is eliminated. The developed Floquet multipliers method is reliable for
small data sets, is fast and easy to implement.
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: 

c1 linear damping coefficient, 1/s
c2 clearance bearing damping coefficient, 1/s
e imbalance eccentricity, m
k1 linear stiffness coefficient, 1/s2

k2 clearance bearing stiffness coefficient, 1/s2

q1 rotor co-ordinate in the horizontal direction, m
q2 rotor co-ordinate in the vertical direction, m
t time, s
D nominal radial gap of clearance bearing, m
v rotor operating speed, rad/s


